Riyaziyyatın iqtisadiyyatda rolu
Nurlan Quliyeva
Göygöl rayonu Üçtəpə kənd orta məktəbinin riyaziyyat və informatika müəllimi
İnformasiya vasitələrinin inkişaf etdiyi qlobal dünyada insan məlumat bolluğunda üzur. Kütləvi infofmasiya vasitələri beyləri yükləyir. Lakin bunlara baxmayaraq yenə cəmiyyətin, elmli insanın tələbatı ödənmir. Ciddi işlərə, dəqiq elmlərə ehtiyac duyulur. Riyaziyyat elmlərin şahıdır! Bu gün onun həyatın bütün sahələrində, hətta ədəbiyyatda da yeri var!
İstisadiyyatı isə riyaziyyatsız təsəvvür etmək mümkün deyil. Bütün maliyyə işiləri hesab əməliyyatlarının köməyi ilə yerinə yetirilir. Digər tərəfdən iqtisadiyyatın xüsusi sahəsi olan riyazi iqtisad iqtisadi məsələləri riyaziyyat elminin imkanlarına görə müəyyənləşdirir. Bankların, ölkələrin ümumi durumunu hesablayan iqtısadçılar statistikanın nəticələrini nəzərə alaraq riyazi iqtisadın köməyi ilə müəyyən proqnozlar verirlər. Yaxşı iqtisadçı olmaq üçün həm riyaziyyatı, həm də iqtisadiyyatı bilmək lazımdır.
Riyaziyyat ilk baxışdan çətin və cansıxıcı görünən elmdir. Onu sevmək üçün başa düşmək lazımdır. Bəşəriyyətlə eyni vaxtdan yaranmış, uzun inkişaf yolu keçmişdir. Hal-hazırda ölkəmizdə riyaziyyat elmi yüksək səviyyədədir. Lakin tədrisi dünya standartlarına çatdırmaq, şagirdlərin təfəkkürünü inkişaf etdirmək lazımdır.
Muasir təlim metodları müəllimdən tədris etdiyi dərsə yaradıcı yanaşmağı tələb edir. Konsruktiv təlimlə keçirilən dərslər şagirdlərin dünyagörüşünü formalaşdırır, təfəkkürünü inkişaf etdirir. Təhsil Nazirliyinin “Müəllimlərin Peşəkarlıq Səviyyəsinin Artırılması” məqsədilə keçirdiyi kurslarda və Fatma xanım Bunyatovanın “İdrak məktəbi”ndə bu sahədə dəyərli işlər görülür.
VII sinifdə “Xətti funksiya və onun qrafiki”mövzusunda keçdiyim dərsi konstruktiv təlimlə qurdum. Təlimin prinsiplərinə görə dərsi elə layihələndirməliydim ki keçmış biliklər əsasında şagirdlər yeni biliklərini qazansın və onu gələcəklə əlaqələndirsinlər. Həm də məqsədim dərsin həyata-iqtisadiyyata tətbiqini göstərmək idi.
Işə movzunun adını araşdırmaqla başladım. Şaşirdlər funksiya sözünün mənasını və mahiyyətini aydınlaşdıraraq funksiyanın təyin oblastı, qiymətlər çoxluğu və qrafiki haqqında haqqında maraqlı məlumatlar əldə etdilər. Elə ilk dərsdə xətti funksiyanın bütün hallarını yaratdılar qrafiklərini qurdular. Dərs interaktiv üsulla qurulduğundan onlara verdiyim “açar”la bir silsilə funksiyaları analitik formada yazdılar və formulaya görə müəyyən mülahizələr irəli sürdülər.
Sonda qazanılan bilikləri iqtisadiyyata tətbiq edib tələb və təklif funksiyalarının qrafiklərini qurdum. Bilik möhkəmləndi, funksiyaların əhəmiyyəti dərk edildi.
Konsruktiv təlimlə keçirilən dərs aşağıdakı formada tərtib edilmişdi.
Sinfi qruplara böldükdən funksiya sözünün mənasını soruşuram.
Sual: Funksiya sozünün mənasını deyin?
Cavab: Funksiya latın mənşəli sözdür. Yerinə yetirmək mənasını verir.
Mövzunun anlaşılması üçün fərdlərin funksiyalarını araşdırırıq.
Sual: 1) Şagirdin funksiyası hansıdır?
2) Müəllimin funksiyası hansıdır?
3) Oğlanın funksiyalarını sadalayın.
4) Qızın funksiyasını sadalayın.
Cavablar:
1) Şagirdin fəaliyyəti oxumaq, öyrənmək, biliklərini tətbiq etmək və cavab verməkdir. Fəaliyyətlərinə görə məktəbdə qazndıqları şagirdin funksiyasıdır.
2) Müəllimin fəliyyəti dərsi qurmaq, bilikləri mənimsətmək, müzakirələr aparmaq, qiymətləndirmək və sairədir. Nəticə funksiyadır.
3) Şagird evdə oğul və ya qızdır – övladın funksiyaları sadalanır.
4) Müəllim evdə valideyndir – funksiyalar sadalanır.
Fəaliyyət sahələrini və vəzifələri artırmaqla funksiya sözünün mənasına görə funksiyanın təyin oblastının və qiymətlər çoxluğunun izahına körpü salırıq. Anlaşılır ki funksiya münasibətdir. O, şagird, oğul, nəvə və sairə ola bilər. Olduğu yerdəki fəaliyyətlər çoxluğu onun təyin oblastı, fəaliyyətə uyğun nəticə qiymətlər oblastıdır.
Müəllimin şərhi:
1) İki dəyişən kəmiyyət arasındakı asılılığa funksiya deyilir. Məsələn s = v * 3, t = 3 burada surət və yol dəyişən kəmiyyətlərdir. Yol surətdən asılı dəyişir. Sürət sərbəst, məsafə asılı dəyişəndir.
2) Sərbəst dəyişənin-arqumentin aldığı qiymətlər çoxluğu funksiyanın təyin oblastıdır. D(f) kimi işarə olunur.
3) Asılı dəyişənin-funksiyanın tapılmış qiymətləri funksiyanın qiymətlər çoxluğudur. E(f) kimi işarə olunur.
Sual: Təbiətdəki funksional asılığa aid misallar göstərin.
Cavablar: 1) Suyun artması yağıntıdan asılıdır.
2) Qaynama temreparurdan asılıdır.
3) Zəlzələlər textonik hərəkətlərdən asılıdır.
4) Quraqlıq havaların isti keçməsindən asılıdır.
Asılılıqlar düz və ya tərs mütənasib olur. Şagirdlərin ilk xatırladıqları münasibətlər əsasən düz mütənasiblik olur. Funksiya haqqındakı mülahizələri ümumiləşdirək y = kx + b və f (x) = kx + b formulunu verirəm. y = f (x) olduğu görünür.
Müəllimin şərhi:
y = kx + b şəklində olan funksiyaya xətti funksiya deyilir. Adından göründüyü kimi x-sərbəst və y-asılı dəyişən arasındakı asılılıq xəttidir. Yəni, iki dəyişən kəmiyyətdən birini artması ilə o biri də artır və ya əksinə. k və b ədədlərdir. k mütənasiblik əmsalı, b sərbəst həddir.
Sual: f (x) = 2x + 3 funksiyası haqqında nə deyə bilərsiniz?
Cavablar:
1)Xətti funksiyadır, sərbəst dəyişənin dərəcəsi vahiddir.
2)Qrafiki düz xətdir.
3)Sərbəst dəyişən istənilən qiyməti ala bilər. D(f) = R
4)Asılı dəyişən istənilən qiyməti ala bilər. E(f) = R
x -1,5 0
2x + 3 0 3
Sonra k, b və x –in qiymətlərinə görə funksiyaların qrafiklərini sxematik təsvir edirik . Xətti funksiyanın qrafikini qurduqdan sonra ardıcıl olaraq dəyişənlərin birini sıfır qəbul edib xüsusi halları alır və qrafiklərini qururuq. Şəkil 1.
Konsruktiv təlimdə şagirdlər gələcək biliklərini də yaradırlar. Xətti funksiyada x-in dərəcəsi 1- dir. 1 –in yerinə a parametrini yazıram. Parametrə mənfi, müsbət, tam, kəsr , sıfır vermklə müxtəlif funksiyalar alırıq. Sadəlik üçün b=o götürürük.
Tapşırıq: y = kx + b , b = 0 olduqda, y = kxa şəklinə düşür. Funksiyada a parametrinə həqiqi ədədlər çoxluğundan müxtəlif qiymətlər verin.
Cavablar:
1) y = kxa, a=1, y = kx – koordinat başlanğıcından keçən xətti funksiya.
2) a = 2, y = kx2 – kvadrat funksiya.
3) a = 3, y = kx3 – kub funksiya.
4) a = 0, y = kx0
5) a = -1, y = kx-1
6) a = ½, y = kx1/2
Müəllimin şərhi:
1) y = kxa, a = 0, y = kx0 olduqda, y = k olur. Sıfır üstlü kəmiyyətlər vahid verir. x üstü sıfır vahiddir. y = 3, xətti funksiyadır, qrafiki absis oxuna paraleldir.
2) y = kxa, a = -1, y = kx-1olduqda, y = k/x olur Mənfi üstlü kəmiyyət bir kəsrə bərabərdir. Kəsrin sürəti vahid, məxrəci müsbət üstlü kəmiyyətdir. y = k/x – tərs mütənasıb asılılıqdır, qrafiki hiperbola əyrisidir.
3) y = kxa, a = ½, y = kx1/2, dəyişəni kök altında olan funksiyadır, qrafiki hiperbola əyrisidir.
Kvadrat, kub, tərs mütənasib və kökaltı funksiyaların qrafikləri. Şəkil 2.
Biliyi möhkəmləndirməyin ən yaxşı yolu onu həyata tətbiq etməkdir. Riyaziyyatın demək olar ki bütün sahələrinin iqtisadiyyata tətbiqi var. Elmi həyatiləşdirmək və dünyagörüşünü artırmaq məqsədilə bazar iqtisadiyyatında mühüm rol oynayan tələb və təklif funksiyalarının izahını verib qrafiklərini qururam.
Müəllimin şərhi:
Tələb funksiyası bazarın vəziyyətini alıcı baxımından izah edir. Alıcı maraqlı olur ki az pula daha çox mal alsın. Bazarın tələbinə görə qiymət aşağı olduqda mal çox satılır. Bunu y = 6 – 3x funksiyasının köməyi ilə göstərmək olar. x – qiymət, y – satılacaq malın miqdarıdır.
x = 1, y = 3
x = 2, y =0 göründüyü kimi qiymət artdıqca satış sıfra yaxınlaşır.
Təklif funksiyası bazarın vəziyyətini satıcı baxımından – daha böyük anlamda izah edir. Satıcı qazan etmək üçün çox mal satmaq istəyir. Münasibəti y = 6 + 3x funksiyasının köməyilə göstərmək olar.
x = 1, y = 9
x = 2, y = 15 göründüyü kimi həm qazanc, həm də malın miqdarı artır. Funksiyaları ümumi şəkildə y = b + kx, y = b – kx kimi göstərilir.
Şəkil 3.
Alıcı çox almaq, satıcı münasib qiymətə satıb qazanmaq istəyir. Maraqlar qiymətdə toqquşur. Bu məsələdə də iqtisadçılar müəyyən proqnozlar verir, infilyasiyanı hesablayırlar.
Riyaziyyat elmi idrakın inkişafına xidmət edir. Onu konsruktiv təlimlə tədris etmək fəndaxili movzular arasıdakı əlaqəni daha da möhkəmləndirir. Başqa fənlərlə vəhdəti şagird təfəkküründə yeni dünya yaradır. Hər addımda rastlaşdığımız iqtisadi münasibətlər riyaziyyata həyat verir!
Nurlan Quliyeva
Baxış: 3929